Home | About JCVJS | Editorial board | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Journal of Craniovertebral Junction and Spine
Search Articles   
Advanced search   
Year : 2018  |  Volume : 9  |  Issue : 1  |  Page : 32-36

The substantiation of the elastic–viscoplastic model of the human spine for modeling the correction process of kyphoscoliotic deformation

1 Department of Traumatology and Orthopedics, Tyumen State Medical University, Tyumen, Russia
2 Department of Machinery and Equipment of the Oil and Gas Industry, Tyumen Industrial University, Tyumen, Russia

Correspondence Address:
Dr. Konstantin S Sergeev
Tyumen State Medical University, 54, Odesskaya Street, 625023, Tyumen, Russian Federation
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jcvjs.JCVJS_156_17

Rights and Permissions

Purpose: The relevance of the problem is caused by an increase in the number of spine-related diseases among children, including scoliosis. Currently, there are no methodologies for the treatment of scoliosis, which ensure an unambiguous positive result. The purpose of the article is to justify the spinal model as an elastic viscoplastic body for further mathematical modeling of the process of spine correction and search for its optimal conditions. Methodology: The leading approach to the study of this problem is the development of techniques for the surgical treatment of deformities of the vertebral column with the aid of an external fixation device for the spine, providing for a rigid connection of the elements of the apparatus with each other and with the spine. The rigid connection between the elements of the external fixation device increases the degree of static indeterminacy of the design, which leads to the occurrence of additional dangerous stresses in the details of the apparatus and in the vertebrae. The control actions in such devices do not provide an adequate result for the process of correction of the vertebral column. Results: The main result is the substantiation of the spine model as an elastic viscoplastic body. This will allow more detailed consideration of the medical and biological features of the spine and the physical and mechanical properties of human bone and soft tissues. The proposed model will allow developing an adaptive design of the device, taking into account specific features of the organism and more effectively managing the correction process. Value: The materials of the article can be useful for scientists, doctors and specialists in conducting scientific research on the problem of spine deformation correction and the development of appropriate technical means.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded34    
    Comments [Add]    

Recommend this journal