Home | About JCVJS | Editorial board | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |   Login 
Journal of Craniovertebral Junction and Spine
Search Articles   
    
Advanced search   
 


 
   Table of Contents  
ORIGINAL ARTICLE
Year : 2021  |  Volume : 12  |  Issue : 3  |  Page : 287-293  

Outcomes and survival of spinal metastasis with epidural compression


1 Department of Medical Clinics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
2 Division of Clinical Oncology, Department of Medical Images, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
3 Department of Orthopaedic and Anesthesiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil

Date of Submission06-Mar-2021
Date of Acceptance07-Jun-2021
Date of Web Publication8-Sep-2021

Correspondence Address:
Rômulo Pedroza Pinheiro
Department of Orthopaedic and Anesthesiology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo
Brazil
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jcvjs.jcvjs_33_21

Rights and Permissions
   Abstract 


Objective: The goal of the study was to retrospectively evaluate the demographics, clinical manifestation, outcomes, treatment result, and survival of patients with spinal metastasis with epidural metastasis who underwent surgical treatment.
Materials and Methods: A retrospective evaluation of 103 patients with spinal metastasis and epidural compression who underwent surgical treatment between 2009 and 2015 was performed. The recorded parameters selected for the study were general demographic data (gender, age, and educational level) and clinical data (primary tumor, performance status according to Karnofsky score, neurological status according to Frankel scale, pain, surgical treatment outcomes, and patient survival).
Results: The mean age of the patients was 55.28 ± 15.79 years, and spinal metastasis was more frequent in males (61.7%). The two most frequent tumors were malignant breast cancer (26.21%) and prostate cancer (22.33%). Preoperative pain was presented in 96 (94.12%) patients and improvement was observed in 44 (47.31%) patients. Symptoms of spinal cord compression were the initial clinical manifestation of the primary tumor in 35 (33.98%) patients. Neurological deficit was observed in 66 (64.07%) patients, and improvement was observed in 43 (41.74%) patients. Improvement of functional outcome and pain was observed in 34 (37.38%) patients. The mean survival was 12.26 months. Longer survival (mean 19.13 months) was observed in patients who showed improvement in their ability to walk or kept it preserved (Frankel D or E).
Conclusions: Surgical treatment of spinal metastasis can improve pain and functional activities. Longer survival was observed in patients that keep or recovery the walking ability.

Keywords: Neoplasm, neoplasm metastasis, operative procedures, spine


How to cite this article:
Candido PB, Peria FM, Pinheiro RP, Costa HR, Defino HL. Outcomes and survival of spinal metastasis with epidural compression. J Craniovert Jun Spine 2021;12:287-93

How to cite this URL:
Candido PB, Peria FM, Pinheiro RP, Costa HR, Defino HL. Outcomes and survival of spinal metastasis with epidural compression. J Craniovert Jun Spine [serial online] 2021 [cited 2021 Dec 8];12:287-93. Available from: https://www.jcvjs.com/text.asp?2021/12/3/287/325692




   Introduction Top


The spine is a common site for bone metastases, and it is reported that 60%–70% of patients with systemic cancer develop spinal metastases, although only 10% are symptomatic.[1],[2] Spinal cord compression (SCC) occurs in 5%–20% of patients with spinal metastases, and there is an increased risk for developing SCC if cancer has already spread to bones. It can lead to significant morbidity due to pain, spinal instability, and neurological deficits.[1],[3] Certain cancers display bone tropism with more than one-half of patients developing spinal metastases, such as prostate and breast.[1],[4] The thoracic spine is the most frequently affected segment, followed by lumbar and cervical spine.[5],[6] Epidural or vertebral metastasis is presented in 94.48% of patients, and intradural extramedullary (5%–6%) or intramedullary metastases (0.5%) are rare.[1],[5]

The widespread availability of advanced imaging and the improvement of survival with the use of target therapies have contributed to increase the magnitude of the problem related to spinal metastasis.[1],[3] The number of spine metastasis has shown considerable increase, and it is expected an increase in the number of survivors and patients who will undergo surgery.[6],[7]

Surgical treatment of spinal metastasis received acceptance and began to be widely used after the report of a controlled trial by Patchell et al. showing that surgery followed by radiotherapy provided better outcomes compared to radiotherapy alone in patients with a life expectancy superior to 3 months.[8] The report of Patchell et al. influenced the indication for surgical treatment of spinal metastasis and adopted the threshold of life expectancy that has also influenced the decision for surgical indication.[8],[9]

The goal of surgical treatment of spinal metastasis remains palliative for pain relief, restoration or preservation of the neurological function, stabilization of spinal segment, and improvement of health-related quality of life.[10],[11] The prognosis of spinal metastasis is not very promising and difficult to predict as well as the therapeutic decision. The surgical treatment is palliative, but patients with spinal metastasis and good-to-moderate prognoses seem to benefit from surgical treatment.[11],[12],[13] The therapeutic decision of spinal metastases has considered the nature of the primary tumor, the patient's overall clinical condition, neurological status, and survival scales.[1],[7],[14],[15],[16] However, it is very difficult to predict the prognosis of a patient with spinal metastasis and choose the best treatment option.

Our facility is a reference center for oncology, and the number of referred patients with spinal metastasis is growing. The motivation of the study was to perform a critical retrospective evaluation of patients who underwent surgical treatment of spinal metastasis with epidural compression.


   Materials and Methods Top


The study has been approved by the institutional ethical committee (IEC/6513/2015). A retrospective review and data collection of all patients with spinal metastasis and epidural compression who underwent surgical treatment between March 2009 and August 2015 in the Department of Orthopedics and Anesthesiology of the Faculty of Medicine of Ribeirao Preto - São Paulo University - Brazil - were performed. The inclusion criteria were patients older than 18 years with a diagnosis of spinal metastasis and epidural metastasis of solid malignant tumor who underwent surgical treatment. The exclusion criteria were patients who previously had a surgical approach to spinal decompression and with diagnosis of hematological malignancy. One hundred and three patients who met the inclusion criteria were enrolled in the study.

Posterior decompression and stabilization using pedicle screw were the mainstay treatment in all 103 patients. Posterior reconstruction of the anterior column using methacrylate and cages was additionally performed in 25 patients and a combined approach in seven patients.

The recorded parameters selected for the study were general demographics data (gender, age, and educational level) and clinical data (primary tumor, performance status according to Karnofsky score,[17] location, neurological status according to Frankel scale,[18] pain, surgical treatment outcomes, and patient survival).

Statistical analysis

The clinical data were described through absolute and percentage frequencies (qualitative variables) and through measures such as mean, standard deviation, minimum, median, and maximum (quantitative variables). ANOVA followed by Tukey's test was used to compare the difference between time elapsed between the onset of symptoms and the performance of imaging for diagnosis. McNemar test was used to verify the effect of intervention in relation to qualitative variables (pain and classification according to Frankel scale in the pre- and post-operative period). The cumulative survival curve was generated by Kaplan–Meyer method and the log-rank test to evaluate curve differences. The level of significance (P) was set at 0.05.


   Results Top


Data of 103 patients were collected. Sixty-three (61.7%) were male. The mean age of the patients was 5.28 ± 15.79 years. The two most frequent tumors were malignant breast cancer (26.21%) and prostate cancer (22.33%). The primary tumor site was unable to be identified in 7 patients (6.8%) [Table 1]. The most common location of spinal metastasis was in thoracic spine (62 patients - 60.19%), followed by cervical spine (24 patients - 23.30%) and lumbar spine (17 patients - 16.50%).
Table 1: Distribution of primary tumors

Click here to view


A statistical difference was observed between educational levels in relation to the time elapsed between the onset of symptoms and the performance of imaging tests for diagnosis (ANOVA/Tukey's test - P 0.05). The longest period between symptoms and imaging tests for diagnosis was observed in patients with a low level of education [Table 2].
Table 2: Time interval (days) of symptoms onset and imaging tests for diagnosis according to patient educational level

Click here to view


The patient performance scale according to Karnofsky performance status (KPS) was 50 in 9 patients (8.91%), 60 in 33 (32.67%), 70 in 34 (33.66%), 80 in 21 (20.79%), 90 in 3 (2.97%), and 100 in 1 (0.99%) patient.

Preoperative pain was observed in 96 (94.12%) patients; however, 5 (5.88%) patients did not report pain despite spinal canal compression symptoms. Pain improvement was observed in 44 patients (47.31%), and there was statistical improvement of postoperative pain (McNemar test – P < 0.05), although 49 (52.69%) patients still had postoperative pain despite the stabilization and decompression of the affected vertebral segment.

The symptoms of spinal compression were the initial manifestation of the primary tumor in 35 (33.98%) patients. These patients were unaware of the presence of the primary tumor that was diagnosed after the treatment of spinal metastasis. Pre- and post-operative neurological deficit according to the Frankel scale is illustrated in [Table 3]. Preoperative neurological deficit was presented in 66 (64.07%) of patients and reduced to 43 (41.74%) after surgery. Ten patients were excluded from analysis because there was no reliable information. There was a statistical improvement of neurological deficit according to the Frankel scale in 38.73% of patients (McNemar test – P < 0.01). Worsening of the neurological deficit was observed in 3 (3.23%) patients [Table 3].
Table 3: Pre- and post-operative neurological deficit according to Frankel scale

Click here to view


Functional improvement was considered as a change of Frankel A, B, or C to Frankel D or E [Table 4]. The patient who had improvement or kept Frankel D or E grade had a statistical longer survival (19.13 months) compared to patients who did not show functional improvement (7.89 months) (log-rank test [P < 0.01]) [Figure 1]. Considering the outcomes of functional improvement and pain, it was observed that 34 (37.38%) patients improved both and 19 (21.11%) patients did not improve both.
Figure 1: The Kaplan–Meier survival curve of the overall group of patients

Click here to view
Table 4: Average survival (months) according to postoperative functional improvement

Click here to view


The mean patient survival of all patients was 12.26 months [Figure 1]. The patient survival varied according to the type of primary tumor, and it was higher in patients with prostate (average 17.46 months) and breast tumors (average 15.90 months). The survival of the six most frequent types of tumor is illustrated in [Table 5].
Table 5: Average patient survival in months among the most frequent tumors

Click here to view


The patient survival was statistically higher in patients that functional improvement (average 16.05 months) compared with patients without functional improvement (average 6.82 months) (P = 0.05).

The survival of patients who presented symptoms of spinal cord compression before de-diagnosis of the primary tumor (18.35 months) showed a statistical difference compared to the group of patients who already had a diagnosis of the primary tumor (11.57 months).


   Discussion Top


The sample of patients studied has confirmed the reports indicating the spine as a common site for bone metastasis that can produce epidural compression with high morbidity and reduced quality of life.[1],[2],[4] The thoracic spine was the most frequent location, and breast and prostate spinal metastases were the most frequently observed primary tumor in our patients and other reports of the same country.[10],[11],[13],[15],[16],[19] Contrary to what was reported in other countries, metastases of primary lung tumor were less frequent in our patients as well as in local reports.[10],[13],[15],[19],[20] This finding may be related to the lack of target therapies in our country, which has increased the survival of these patients. It was not possible to identify the primary tumor in 7 (6.8%) patients. Metastases of unknown primary tumor site are found in about 4% of all cancers and 13% of spinal metastases.[14],[21] Unknown primary tumors are aggressive, and patient survival is shorter.[14],[21],[22] Spinal metastasis can occur in any age group; they are most commonly observed between 40 and 70 years and most frequent in males.[23],[24] The mean age of our patients and the higher frequency in males were according to the reported literature.[1],[2],[5]

It has been suggested that the incidence of spinal metastasis would be higher in males than females because of higher incidence of prostate cancer relative to breast cancer.[1],[23] However, in our patients, spinal metastasis was more frequent in males although breast was more frequent than prostate cancer in the overall group.

Education level has not been considered in the reports of spine metastasis. In our patients, the longest period between symptoms and imaging test for diagnosis was observed in patients with low level of education. A statistical difference was observed between educational levels in relation to the time elapsed between the onset of symptoms and the performance of imaging tests for diagnosis.

Pain is the most common manifestation in patients with spinal metastasis (80%–95%) followed by neurologic dysfunction (35%–75%),[1],[25],[26],[27] and the findings of our patients are according to the literature. However, the first clinical manifestation in 33.98% of our patients was symptoms of spinal compression, and they were unaware of the presence of primary tumor. This clinical finding was similar in both sexes, and it has not been evidenced in the relevant literature.[1],[23],[25]

In our group of patients, we observed a statistical improvement in pain and neurological symptoms after surgical treatment (68% of patients were able to walk after surgery). A meta-analysis of nonrandomized cohorts showed that surgery was 1.3 times more likely to maintain ambulation and twice as likely to restore ambulation.[3],[28],[29] We did not take into account the modality of surgical treatment or the location of metastasis, but only the performance of decompression of the vertebral canal and surgical stabilization. Metastasis location, surgical approach, or method of reconstruction of the affected vertebral body was not considered.

The lack of patient-reported outcome instruments specifically designed for spinal oncologic disease and the retrospective collected data were a limitation to evaluate the improvement of health-related quality of life. We established the functional improvement criteria, including pain and neurological improvement (Frankel D and E). According to our established criteria, 37.38% of patients showed functional criteria improvement, and the survival of these patients was higher compared to patients that did not show functional improvement. The surgical treatment was worth to perform on this group of patients. However, the identification of these groups of patient is still a challenge.

Although scales have been devised for survival of patients with spinal metastasis, there is the dearth of evidence related to predictors of neurologic, functional, and quality of life outcomes for patients with spinal metastasis.[7] Expected survival of at least 3 months has been presented as an essential prerequisite for surgical treatment.[8],[25] However, these assumptions are not evidence-based, and it was reported that quality of life 6 weeks after surgery for spinal metastasis is independent of survival.[9] Considering the presence of epidural metastases in our patients, the surgical indication was related to its association with gross instability, pain, and/or neurological deficit that are classical indications for surgical treatment of spinal metastases provided that clinical conditions and other mentioned parameters were suitable to tolerate the surgical procedure.[11],[26]

The overall general patient condition (KPS) has an important role in our surgical indication treatment. There was no patient with less than 50% according to KPS in our group of patients who underwent surgical treatment. KPS has been shown to be one of the strongest prognostic indicators for survival, and a significant association has been reported between KPS and duration of survival.[1],[23],[26] Prognostic factors for survival varied substantially according to the primary tumor combined with negative factor [Figure 2].[7],[11],[12]
Figure 2: The Kaplan–Meier survival curve according to functional improvement. Red line represents Frankel A, B, and C patients. Black line represents Frankel D and E patients (functional improvement)

Click here to view


Reported median overall survival of the patients with spinal metastasis and spinal cord compression ranges from 3–7 months, with a 36% probability of survival, to 12 months.[1] The mean survival of our patients was 12.26 months and statistically difference was observed among specific tumor type, functional improvement, walkability, and symptoms of spinal cord compression as the first tumor manifestation, according to similar reports.[30] Overall survival depends on the type of primary tumor, patient general condition, risk factors, and a multidisciplinary approach. Surgical treatment is only part of the therapeutic approach, and its association with other therapies has demonstrated positive outcomes.[1],[2],[5],[11],[25] Surgery should be reserved for patients with moderate or good prognosis, and it should be avoided for patients with poor prognosis.[12],[25]

The surgical technique used in our patients followed the classical concept of stabilization and decompression of vertebral segment. Spinal stereotactic radiotherapy was not available in our facilities at the time. The reports of separation surgery and less invasive surgery associated with stereotactic radiotherapy can provide the reported results of surgery associated with radiotherapy with less morbidity and complications.[28],[29] Unfortunately, we cannot afford reported drugs that are effective in treating spinal metastasis conservatively or associated with surgery.

The retrospective analysis of the results of patients with spinal metastasis and epidural compression, although with some drawbacks of the study design, allowed some conclusions that will contribute to improve the care of these groups of patients.

Surgery together with a multidisciplinary approach (pain management, radiotherapy, chemotherapy, surgery, and rehabilitation) has an important role in surgical treatment of spinal metastasis, and improvement in pain, neurological deficit, and function can be achieved. Less invasive surgery and new implant technologies associated with stereotactic radiosurgery or stereotactic body radiotherapy could offer less surgical morbidity and the advantages of the traditional surgical treatment for the selected group of patients.[28],[29]


   Conclusions Top


Surgical treatment of spinal metastasis with epidural compression should be considered in selected patients. Surgical treatment can improve pain, neurological deficit, and functional activities. Surgical treatment together with a multidisciplinary approach should be considered in selected patients.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Sutcliffe P, Connock M, Shyangdan D, Court R, Kandala NB, Clarke A. A systematic review of evidence on malignant spinal metastases: Natural history and technologies for identifying patients at high risk of vertebral fracture and spinal cord compression. Health Technol Assess 2013;17:1-274.  Back to cited text no. 1
    
2.
Valesin Filho ES, Tardini R, Abreu LC, Motter BV, Adami F, Rodrigues LM. Epidemiological study of 55 patients with symptomatic metastatic spinal disease in Santo André - SP, Brazil. Coluna Columna 2013;12:32 5.  Back to cited text no. 2
    
3.
Klimo P Jr., Thompson CJ, Kestle JR, Schmidt MH. A meta-analysis of surgery versus conventional radiotherapy for the treatment of metastatic spinal epidural disease. Neuro Oncol 2005;7:64-76.  Back to cited text no. 3
    
4.
Wong DA, Fornasier VL, MacNab I. Spinal metastases: The obvious, the occult, and the impostors. Spine (Phila Pa 1976) 1990;15:1-4.  Back to cited text no. 4
    
5.
Bartels RH, van der Linden YM, van der Graaf WT. Spinal extradural metastasis: Review of current treatment options. CA Cancer J Clin 2008;58:245-59.  Back to cited text no. 5
    
6.
Harel R, Angelov L. Spine metastases: Current treatments and future directions. Eur J Cancer 2010;46:2696-707.  Back to cited text no. 6
    
7.
Nater A, Martin AR, Sahgal A, Choi D, Fehlings MG. Symptomatic spinal metastasis: A systematic literature review of the preoperative prognostic factors for survival, neurological, functional and quality of life in surgically treated patients and methodological recommendations for prognostic studies. PLoS One 2017;12:e0171507.  Back to cited text no. 7
    
8.
Patchell RA, Tibbs PA, Regine WF, Payne R, Saris S, Kryscio RJ, et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: A randomised trial. Lancet 2005;366:643-8.  Back to cited text no. 8
    
9.
Dea N, Versteeg AL, Sahgal A, Verlaan JJ, Charest-Morin R, Rhines LD, et al. Metastatic spine disease: Should patients with short life expectancy be denied surgical care? An international retrospective cohort study. Neurosurgery 2020;87:303-11.  Back to cited text no. 9
    
10.
Mattana JL, Freitas RR, Mello GJ, Neto MA, Freitas Filho Gd, Ferreira CB, et al. Study on the applicability of the modified Tokuhashi score in patients with surgically treated vertebral metastasis. Rev Bras Ortop 2011;46:424-30.  Back to cited text no. 10
    
11.
Botelho RV, de Oliveira MF, Rotta JM. Quantification of vertebral involvement in metastatic spinal disease. Open Orthop J 2013;7:286-91.  Back to cited text no. 11
    
12.
Aoude A, Amiot LP. A comparison of the modified Tokuhashi and Tomita scores in determining prognosis for patients afflicted with spinal metastasis. Can J Surg 2014;57:188-93.  Back to cited text no. 12
    
13.
Anzuatégui PR, Cunha LA, Mello GJ, Stieven Filho E, Graells XS. Spinal metastasis surgery: A proposal for a predictive model of morbidity and mortality. Rev Bras Ortop (Sao Paulo) 2019;54:665-72.  Back to cited text no. 13
    
14.
Paholpak P, Sirichativapee W, Wisanuyotin T, Kosuwon W, Jeeravipoolvarn P. Prevalence of known and unknown primary tumor sites in spinal metastasis patients. Open Orthop J 2012;6:440-4.  Back to cited text no. 14
    
15.
Cortez PR. Spinal metastasis: Diagnosis, treatment and prognosis – integrative review from 2012 to 2017. Coluna Columna 2020;19:58-66.  Back to cited text no. 15
    
16.
Kim LD, Bueno FT, Yonamine ES, Próspero JD, Pozzan G. Bone metastasis as the first symptom of tumors: Role of an immunohistochemistry study in establishing primary tumor. Rev Bras Ortop 2018;53:467-71.  Back to cited text no. 16
    
17.
Karnofsky DA, Young CW. Comparative aspects of the pharmacology of the antimetabolites. Fed Proc 1967;26:1139-45.  Back to cited text no. 17
    
18.
Frankel HL, Hancock DO, Hyslop G, Melzak J, Michaelis LS, Ungar GH, et al. The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. I. Paraplegia 1969;7:179-92.  Back to cited text no. 18
    
19.
Neto JA, Fontes BP, Macedo RD, Simoes CE. Patients with spinal metastasis submitted to neurological descompression and stabilization. Coluna Columna 2016;15:230-4.  Back to cited text no. 19
    
20.
Junior AV, Bortoletto A, Rodrigues LC. Evaluation of surgical treatment of patients with vertebral metastasis secondary to breast carcinoma. Coluna Columna 2012;11:226-9.  Back to cited text no. 20
    
21.
Hillen HF. Unknown primary tumours. Postgrad Med J 2000;76:690-3.  Back to cited text no. 21
    
22.
Choi J, Nahm JH, Kim SK. Prognostic clinicopathologic factors in carcinoma of unknown primary origin: A study of 106 consecutive cases. Oncotarget 2017;8:62630-40.  Back to cited text no. 22
    
23.
Yıldız Çeltek N, Süren M, Demir O, Okan İ. Karnofsky Performance Scale validity and reliability of Turkish palliative cancer patients Turk J Med Sci 2019;49:894-8.  Back to cited text no. 23
    
24.
Quraishi NA, Rajagopal TS, Manoharan SR, Elsayed S, Edwards KL, Boszczyk BM. Effect of timing of surgery on neurological outcome and survival in metastatic spinal cord compression. Eur Spine J 2013;22:1383-8.  Back to cited text no. 24
    
25.
Perrin RG, Laxton AW. Metastatic spine disease: Epidemiology, pathophysiology, and evaluation of patients. Neurosurg Clin N Am 2004;15:365-73.  Back to cited text no. 25
    
26.
Sciubba DM, Petteys RJ, Dekutoski MB, Fisher CG, Fehlings MG, Ondra SL, et al. Diagnosis and management of metastatic spine disease. A review. J Neurosurg Spine 2010;13:94-108.  Back to cited text no. 26
    
27.
Stark RJ, Henson RA, Evans SJ. Spinal metastases. A retrospective survey from a general hospital. Brain 1982;105:189-213.  Back to cited text no. 27
    
28.
Barzilai O, McLaughlin L, Amato MK, Reiner AS, Ogilvie SQ, Lis E, et al. Minimal access surgery for spinal metastases: Prospective evaluation of a treatment algorithm using patient-reported outcomes. World Neurosurg 2018;120:e889-901.  Back to cited text no. 28
    
29.
Uei H, Tokuhashi Y, Maseda M, Nakahashi M, Sawada H, Matsumoto K, et al. Clinical results of minimally invasive spine stabilization for the management of metastatic spinal tumors based on the epidural spinal cord compression scale. Biomed Res Int 2018;2018:1258706.  Back to cited text no. 29
    
30.
Park S, Lee C, Chung S, Lee K. How accurately can Tokuhashi score system predict survival in the current practice for spinal metastases? Prospective analysis of 145 consecutive patients between 2007 and 2013. J Spinal Disord Tech 2015;28:E219-24.  Back to cited text no. 30
    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5]



 

Top
  
 
  Search
 
    Similar in PUBMED
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusions
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed450    
    Printed8    
    Emailed0    
    PDF Downloaded37    
    Comments [Add]    

Recommend this journal