Journal of Craniovertebral Junction and Spine

ORIGINAL ARTICLE
Year
: 2018  |  Volume : 9  |  Issue : 2  |  Page : 116--121

Cadaveric device-injected very high-viscosity cement during vertebroplasty


Waleed Awwad1, Amna Baljoun1, Yasir Alabdulkarim1, Abdulrahman D Algarni1, Chung-Hwan Kim2, Demitri Giannitsios3, Lorne Beckman3, Jean Ouellet4, Thomas Steffen3 
1 Department of Orthopedic Surgery, King Saud University, Riyadh, Saudi Arabia
2 Department of Orthopaedic Surgery, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea
3 Department of Orthopedic Surgery, Orthopaedic Research Laboratory, McGill University, Montreal, Canada
4 McGill University Health Centre, McGill University, Montreal, Canada

Correspondence Address:
Dr. Abdulrahman D Algarni
Department of Orthopedic Surgery, King Saud University, Riyadh
Saudi Arabia

Introduction: Cement extravasation during vertebroplasty (VP) is the most commonly reported complication. Cement viscosity is considered the single most important predictor of the risk of extravasation. Certainly, injecting high-viscosity cement (HVC) is difficult to utilize in real practice. We invented a new device capable of injecting high-viscosity with ease and at a distance to avoid radiation. The aim of this study is to confirm the efficacy and safety of the new device on cadaveric vertebrae. Methodology: A 126 osteoporotic vertebral bodies were harvested from cadavers. Eighty vertebrae were included in the study. Computer-randomization software was used to allocate specimens over two main groups, Conventional VP and New Device. Both groups were further subdivided into two subgroups; high-viscosity and low-viscosity. A custom device was used on each vertebra to induce a compression fracture. Results: Injecting HVC was associated with a lower leakage volume compared with low-viscosity cement. HVC was associated with no leakage into the spinal canal. It was also associated with a low incidence of vascular extravasation (P < 0.001). The mean volume of cement leakage in the low-viscosity group was 0.23 and 0.15 cc, for the Conventional VP and New Device, respectively. In both groups, the most common site for leakage was the vertebral end plate, which was exhibited more in the low-viscosity group (71.5%) compared with the high-viscosity group (42.5%). The preset target amount of cement to be injected was reached in 99% of the time when injecting HVC with the New Device, compared with 62% using the Conventional VP. In both groups, there was no correlation between the amount of cement injected and the amount of leakage. Conclusion: The new device is capable of injecting HVC easily, with a lower incidence of cement leakage. It also minimized the risk of radiation exposure to the surgeon.


How to cite this article:
Awwad W, Baljoun A, Alabdulkarim Y, Algarni AD, Kim CH, Giannitsios D, Beckman L, Ouellet J, Steffen T. Cadaveric device-injected very high-viscosity cement during vertebroplasty.J Craniovert Jun Spine 2018;9:116-121


How to cite this URL:
Awwad W, Baljoun A, Alabdulkarim Y, Algarni AD, Kim CH, Giannitsios D, Beckman L, Ouellet J, Steffen T. Cadaveric device-injected very high-viscosity cement during vertebroplasty. J Craniovert Jun Spine [serial online] 2018 [cited 2023 Mar 27 ];9:116-121
Available from: https://www.jcvjs.com/article.asp?issn=0974-8237;year=2018;volume=9;issue=2;spage=116;epage=121;aulast=Awwad;type=0